
Page 1

Using the LANL BProc Clusters

Harvey Wasserman
HPC Systems Group (CCN-7)

Los Alamos National Laboratory
http://asci-training.lanl.gov/BProc

 May, 2006

Operated by the University of California for the National Nuclear Security Administration,
of the US Department of Energy. Copyright © 2005 UC | Disclaimer/Privacy

hjw@lanl.gov
Last Modified: 05/11/2006 LA-UR-05-2741

Page 1

TABLE OF CONTENTS

Course Overview

LANL Computing
Strategy

Getting an Account

Clustermatic

- Science Appliance

- Clustermatic Concepts

- Production Clustermatic

- Clustermatic Summary

System Architecture

- Lightning

- Flash

- Pink

- TLC

- Grendels

- Coyote

- Saguaro

Logging In

- Front End Names

Exercise #1

System Configuration
Revisited

Exercise #2

Filesystems

File Transfer

Modulefiles

Exercise #3

Submitting Jobs

- Basic Process

- LSF on Lightning

- LSF Queue Structure

- The bpsh Command

- Using MPI

- Exercise #4

Using the LANL BProc Computing
Systems
Course Overview

Over the last 2 years Los Alamos National Laboratory has been installing several new
supercomputer clusters that run a locally-modified version of the Linux operating system
called "Clustermatic." Or sometimes "BProc." Anyway, there now are many of these
machines available to users, both ASC-, Institutional Computing, and recharge-funded users.
This course is an introduction to these machines.

BProc systems are easy to use but they are a little different from other Linux systems and
from other systems that have been in use at LANL, especially the HP/Compaq Tru64 clusters
and machine Lambda.

Machines in this category include Lightning, Flash, Pink, Grendels, Coyote, Saguaro, and TLC.

It is assumed that students have familiarity with the LANL computing environment and
familiarity with Unix.

When you finish this course you will:

Understand what a Clustermatic system is and how it differs from traditional
supercomputer clusters;

Understand how the various LANL Clustermatic systems differ from one another;

Understand why we are using Clustermatic;

Understand how to use these machines to compile, run, and monitor jobs.

BProc And the LANL Computing Strategy

All of the Clustermatic systems at LANL essentially serve two purposes:

 1. First and foremost, they are intended to become full production systems, providing
high-availability cycles to users on a 24x7 basis supporting local infrastructure and
typical LANL computing environments for archival storage, resource management,
debugging, network file system, visualization, etc.

 2. They also represent a gateway to future LANL computing models, as shown in the
following table.

Page 2

Monitoring Jobs

- Unix Commands

- LSF Commands

- BProc Commands

Exercise #5

HPSS

- File Transfer Agents

More Hardware
Details

- Node & Processor

- 32-Bit Computing

- Interconnect

Porting
Considerations

- Endianness

Compiling

- Compile Nodes

- Big File Fix

- Available Compilers

- Compiling MPI codes

- LA-MPI Tips

Exercise #6

Debugging

Exercise #7

Panasas

How to Get Help

Future BProc

Reference Info

Course Evaluation

A New LANL Computing Strategy

Objective How the Clustermatic Systems Achieve
Objective

Better price
performance for
platforms

Dual-processor nodes with AMD Opteron or Intel
Xeon processor and Myrinet interconnect

Leverage open
source software
wherever possible

64-bit Linux OS

LA MPI - more robust and portable
message-passing environment than that supplied

by hardware vendors

Vendor-independent
HPC features needed
by ASC applications

Cluster supplied by LinuxNetworX

High performance, global, parallel, filesystem
provided by Panasas.

Provide a
high-availability
cluster computing
environment

Science Appliance software (LinuxBios, BProc, etc.)
provides more efficient large scale cluster system

administration. This means more user cycles.

It is the Science Appliance and BProc software that make Lightning, Flash, Pink, TLC, and
Grendels different from other supercomputer clusters. In subsequent sections of this tutorial
we explain what this software is and how to use it.

Getting an Account

LANL USERS: Approval required.

To get an account on Lightning, use the LANL HPC Accounts web page
http://icnn.lanl.gov/accounts/request.php in the red network.

Note: later in this document we will be discussing a "Lightning" cluster and a "Bolt" cluster;
however, for the purposes of accounts, right now these two are the same, so an account on
Lightning enables you to use Bolt.

To get an account on Flash, Grendels, or Sagurao use the LANL HPC Accounts web page
http://icnn.lanl.gov/accounts/request.php in the yellow network. Approval is required for both
machines. Flash is restricted to users doing NWP work.

Accounts on Pink, TLC, or Coyote require an Institutional Computing project grant.

If you are an IC Principal Investigator you may need to add people to your project. Do
this by going to http://icnn.lanl.gov/accounts/admin/addToProject.php. After
authenticating with a crypto-card, you will be presented with a list of the projects to
which you may add people. On selecting a project an input box will be displayed, as
well as a list of the systems upon which the project has an allocation. Enter the
Z-numbers of the project members and check boxes next to the system names to
create the new accounts.

TRI-LAB USERS and ALLIANCE USERS:

For the most part, neither Lightning nor Flash are available to off-site users. To apply for an
account on Pink use the SNL Sarape Form.

Software Architecture

What Makes the BProc Systems Different?

Page 3

They all use a method of building clusters referred to as a "Science Appliance." Science
Appliance actually refers to a redesign of both hardware and software for large-scale
clusters. This method was developed by LANL's Advanced Computing Laboratory.

The main reason for building these machines as Science Appliances is to provide more
computing cycles to users.

Overall usability of the cluster is improved by:

Reducing hardware and software complexity of the node so that it won't go down as
often; and

Dramatically reducing the reboot time if the node does go down.

What is a Science Appliance? How Does it Differ from a Traditional Cluster?

A traditional cluster is built by replicating a complete workstation's software environment on
every node.

In the Science Appliance architecture, we have master nodes and slave nodes and only the
master nodes have a fully loaded system. The slave nodes run a minimal software stack.

The key software in a Science Appliance is an award-winning suite that LANL developed
called "Clustermatic". Clustermatic features the Beowulf Distributed Process Space (BProc),
LinuxBios, and a variety of other open-source kernel modifications, utilities, and libraries.

LinuxBIOS and Beoboot are open source products that allow very fast boot times, are
remotely accessible, and are designed specifically for cluster systems. For example, the
entire Pink cluster can be rebooted in about 7 minutes.

BProc allows a process space to be shared across multiple nodes in a cluster, even though
those nodes run separate system images. Users create processes on the master nodes and
the system migrates them (the processes, not the users) to the slave nodes.

When a process space is shared this way user processes running on the slave nodes appear
as processes running on the master nodes.

This allows remote process management using the normal UNIX process control facilities
(such as ps and Unix signals) on the master node. Standard input, output, and error streams
are redirected to the master node.

Page 4

One interesting and important fact about BProc systems: The root filesystem is RAM-based.

 More detail on how BProc works is here.

BProc in Production at LANL

On Lightning, Flash, Pink, TLC, and Grendels a software environment consisting of
commonly-used 3rd-party software is layered on top Clustermatic (see figure).

The software environment on the BProc clusters is still
evolving. Furthermore, although all are Linux/BProc
systems, there are differences between them,
principally due to different computational workloads and
user bases. There is an effort to standardize the four
systems, though.

Although the root filesystem in a Science Appliance is
RAM-based, the LANL BProc systems allow NFS mounts.
The extent to which this happens is the biggest
difference between the 4 systems. This, in turn,
significantly affects the way you do file input/output.

Science Appliance Summary

Running jobs on the LANL BProc clusters is easy but is a
little different than other LANL systems.

The system migrates your jobs to the slave nodes but
you can follow the jobs' progress from the master node.
You can never have a shell on the slave nodes.

Input/Output from/to the terminal on BProc systems
happens just as it does on any other system.
Input/Output from/to a file can be different than other
systems.

The slave nodes run a reduced software stack.

The way you use the front ends is different than other
LANL systems.

System Architecture Overview

Each cluster is comprised of some number of "nodes" and an interconnect. In all cases, the
node is a dual-processor "Evolocity" system from the company Linux Networx.

(LANL) Terminology: Some of the clusters are partitioned into what we call "segments." The
important aspect of segments is that user jobs cannot span them. The segments probably
could be quickly combined to create either fewer, larger segments but in practise this hasn't
happened in a long time and is relatively unlikely to again.

Lightning:

April 12, 2005: Total of about 3,060 nodes.

Lightning contains 13 separate "segments." All segments have 256 nodes,
including one master node each. One Lightning segment has dual-core nodes.

Most segments are used for 32-bit production jobs. Two segments are
currently used for 64-bit development. Soon other segments will be
converted from 32-bit to 64-bit.

2 AMD "Opteron" processors, 1.8, 2.0, or 2.4-GHz, each with 1-MB on-chip
Level-2 cache, per node.

4-16 GB per node, depending on the segment.

Includes 128 fileserver nodes not available for computing.

Page 5

Classified system for the simulation requirements of the Stockpile
Stewardship program. Augments the capabilities of ASC QB and CA/CB/CC.

Used primarily for capacity computing, with a typical capacity job mix of
2-D calculations and possibly smaller 3-D jobs.

200 TB Panasas storage.

Theoretical Peak performance of 30 TeraFLOPS; compare to 10 for ASC QA
or QB.

Seven dual-processor file transfer agents (FTAs).

A table showing detailed Lightning configuration info is here (LANL Only),
although you could get the same info by logging in and using the LSF "lshosts"
command.

Page 6

Flash

A 5-segment cluster, between 15 and 300 nodes per segment. Nodes
contain 2 Opteron processors at speeds ranging from 2.0 to 2.4 GHz.

80 additional fileserver nodes not available for computing.

8-16 GB memory per node.

Used entirely for unclassified capacity computing - NWP jobs requiring
relatively few processors.

30 TB Panasas storage.

Pink

A single-segment cluster containing 1,024 nodes.

64 fileserver nodes are not available for computing.

2 Intel 2.4-GHz "Xeon" processors per node.

8KB L1 data cache (2-CP load latency, 64-byte line, one load & one store
per CP) & 512-KB Level-2 cache.

2 GB memory per node.

Intel E7500 chipset, 400-MHz system bus.

Used entirely for Institutional Computing and other non-weapons computing
projects.

Unclassified system on the new TURQUOISE network.

32 TB Panasas storage shared with TLC.

TLC

A single-segment cluster containing 110 user-accessible computing nodes.

16 fileserver nodes are not available for computing.

2 AMD 2.0-GHz "Opteron" processors, each with 1-MB on-chip Level-2 cache
per node.

8 GB memory per node.

Page 7

Disk drive and GigE ports on front end node only.

Used mostly for Institutional Computing, training, and some code
development.

Unclassified system on the new TURQUOISE network.

32 TB Panasas storage shared with Pink.

Grendels

A single-segment cluster containing 124 user-accessible computing nodes.

2 Intel 2.4-GHz "Xeon" processors per node

8KB L1 data cache (2-CP load latency, 64-byte line, one load & one store
per CP) & 512-KB Level-2 cache.

2 GB memory per node

Myrinet interconnect

Disk drive and GigE ports on front end node only.

Used for unclassified capacity computing - NWP M&P codes, Yellow network.

Currently NO Panasas storage; very limited global storage using NFS.

Saguaro

A single-segment cluster containing 32 user-accessible computing nodes.

2 AMD 2.4-GHz "Operton" processors per node.

4 GB memory per node.

Eternet interconnect.

NFS-based global temporary storage.

Page 8

Coyote

Coyote was acquired through a unique
3-year leasing arrangement with Linux
NetWorX,

1,406 dual-processor, single-core AMD
Opteron nodes.

14 TeraFlops total peak performance.

11 TeraBytes total memory.

Shares 160 TB global disk storage with
other IC resources.

Shares 2000 TB archival storage with other IC resources.

Hierarchical InfiniBand interconnect.

64-bit FC3 Linux + BProc V4 operating system with 2.6.14 kernel.

10 additional nodes set aside for sequential computing.

Mellanox AuCD 2.0 - OpenSM/Gen2

Coyote has a loosely-coupled cluster architecture. There are six "tier-I"
clusters (or "segments"), five of which (CY-1, CY-2, ... CY-5) have 272 nodes,
while the remaining one (DOT-X) has has 42 nodes.

Nodes within a tier-I system are interconnected via a tier-I 288-port
PCI-Express-connected Voltaire 4X InfiniBand switch. There is no federation in
the network. It is possible that in the future two tier-I segments may be
combined into a single segment by "cross-connecting" through one of the
288-port switches.

The five big Tier-1 systems all have one BProc master node and 258 BProc
compute nodes. They also have 13 I/O nodes not accessible by users. The
CY-X system has one BProc master node and 36(?) BProc compute nodes,
plus 4 I/O nodes.

In each Tier-I segment one of the 13 I/O nodes is a master I/O node that
manages the process space via BProc for the other 12 I/O nodes. The I/O
masters each have one GigE connection to the external Turquoise network
and one connection to an internal Coyote hardware monitoring network. The
I/O master nodes also provide OpenSM (subnet manager) services for each
Tier-I segment. Each I/O compute node has one IB connection to the Tier-I IB
switch.

All nodes have 8GB PC3200 registered ECC memory.

Coyote also has associated with it 10 nodes for serial processing (cy-s1,
cy-s2, ... cy-s10).

The most important difference between Coyote and the SGI Altix system
used in LANL's Mauve supercomputer is that Coyote is basically a "distributed
memory" supercomputer. Each of the Coyote nodes will be running its own
operating system and codes cannot "share" memory beyond a single node.
This also means that codes will be restricted to the physical memory
available on a single node; they cannot allocate memory on "distant" nodes,

Page 9

as was possible on Mauve.

Comparison Of Lightning and C Cluster Segments

Lightning CA, CB, or CC

255 compute nodes per segment 126 compute nodes per segment

510 compute processors per
segment

504 compute processors per
segment

4.0 GigaFlops peak per processor 2.5 GigaFlops peak per processor

2.0 TeraFlops peak per segment 1.3 TeraFlops peak per segment

8 GB RAM per node
(4 GB per processor)

4 GB RAM per node
(1 GB per processor)

Logging In

The BProc systems all have front ends, which are the ssh gateways but are also used for
other tasks (such as compiling). In this regard they are different from other LANL systems
(such as QB, QSC, etc.). See the Compiling section below.

It's important for you to understand that the front ends are different from the BProc master
nodes, except on TLC. They are different hardware and the terms "front end" and "master
node" are not synonymous.

Another key point: Because Lightning and Flash are in the midst of a transition from 32-bit to
64-bit computing, some of their front ends may be different in terms of compilation but the
front ends are still identical in terms of accessing the slave node segments.

There are seven (7) Lightning front ends, called lc-1, lc-2, lc-3, lc-4, lc-5, lc-6, and lc-64. These
front ends are the gateway to all 13 Lightning segments - you can use any one of them.
However, lc-6 and lc-64 are 64-bit systems; the others are 32-bit systems.

Flash has three front ends (ffe1, ffe2, and ffe-64) that are equivalent in terms of compute
node access; however, ffe1 and ffe2 are 32-bit systems and ffe-64 is a 64-bit system. See
the 64-bit computing section.

Pink has two front ends, pfe1 and pfe2. One of these, pfe1, is in the LANL Turquoise network.
The other, pfe2, is in the LANL Yellow network!

TLC has one front end, tlc.lanl.gov, which is in the Turquoise network.

Grendels has one front end, gfe1.lanl.gov, which is in the Yellow network.

The four Coyote front ends are cy-c1, cy-c2, cy-c3, cy-c4. They are all the same in terms of
reaching the Coyote segments and BProc master nodes, i.e., all four "see" the entire Coyote
cluster.

Saguaro has one front end. Remember - this is not the master node.

To log in to a Red or Yellow network machine, use ssh to one of the front end systems listed
in the table below.

To log in to a Turquoise network machine, two steps are required. First, use ssh to Turqoise
proxy wtrw.lanl.gov and then use ssh one of the front end systems listed in the table
below. These two steps can be combined, as follows:
ssh -t wtrw.lanl.gov ssh pfe1 .

Page 10

BProc System Front Ends

System Front End Names Segment / LSF Host / Master
Node Names

Secure Lightning
lc-1, lc-2, lc-3, lc-4,

lc-5, lc-6
ll-1, ll-2, ll-3, ll-4, ll-5, ll-6;

lb-1, lb,-3, lb-4, lb-5, lb-6, lb-7

Flash ffe1, ffe2, and ffe3 flasha, flashb, flashc, flashd,
flashdev

Grendels gfe1 grendels
Yellow

Saguaro sfe saguaro

Pink pfe1 and pfe2 pink

TLC tlc tlcTurquoise

Coyote cy-c1, cy-c2, cy-c3,
cy-c4

cy-1, cy-2, cy-3, cy-4, cy-5

Exercise #1: Logging In

 1. Log in to one of the workshop machines. This will be either Flash, Pink, or TLC. Use ssh
and authenticate with your CryptoCard.

 2. Obviously, there isn't too much we can do yet because we haven't learned how to run jobs or
compile. Try running the top command. If you've never used it before, try man top. Later,
we will learn about another kind of top command that is important for BProc systems.

 3. Watch Your "Dot!"

Type

echo $PATH

Look at the result and make sure that a period appears before, in between, or after a colon
(:). Here is an example of how it might appear:

/usr/kerberos/bin:/usr/local/bin:/bin:/lsf/bin:/usr/X11R6/bin:.

In this example, it appears at the end. If the period does not appear somewhere in your
path, then type

set path=($path .)

Then type echo $PATH again to make sure your change worked.

It is a very good idea to amend one of your "dot" files (.login or .cshrc or something similar)
to include a line that adds dot to your path. Caution: when you edit your dot files you should
always have two windows open on the machine - one for editing and one for testing.

The shell path variable tells the system where to look for programs that you might want to
run. Having "dot" in your path tells the system to look in the current directory so that when
you execute a file (e.g. a.out) you can just type a.out instead of ./a.out .

This ends the first exercise.

Exercise #2: PS on BProc

 1. In this exercise we will very briefly look at the Unix ps command on BProc systems. On any
Unix system the ps command gives a snapshot of all current processes.

Page 11

 2. Make sure you are logged into a BProc front end system.

 3. Type the following command. Your best bet is to copy and paste it using the mouse.

ps -elf | sed '/root/d'|more

 4. Observe the output briefly. You will see a lot of system-related processes.

 5. Observe your prompt. Then type llogin. When this command finishes you will be on a
master node. Observe your prompt again. Which segment of the machine are you on?

 6. Then input that same ps -elf | sed '/root/d'|more command. What do you observe
that's different?

 7. You should see a lot of user processes where the command name is enclosed in [square
brackets]. Those are ghost processes representing processes that are actually running on
slave nodes. If you don't see any of these, perhaps no one is running.

 8. Log out of the master node by typing "exit."

This ends the second exercise.

Filesystems

This is an area where there are significant differences between the BProc clusters and
between the BProc and other LANL clusters.

Special Security Note: The Turquoise network is designed to enhance collaboration between
Los Alamos and external scientific institutions. No export-controlled code or data is allowed
in the Turquoise Network. You may compile export-controlled source code on pfe2.lanl.gov in
the Yellow network and transfer the binary to a Turquoise filesysem to run the code.

The following filesystems are available on Pink, TLC, and Coyote:

Your home directory.
Your scratch directories.
The project directories.
The archive directories.

The scratch, project, and archive directories are the same on all Turquoise network systems.
The home directories are not!

HPSS does not exist on the Turquoise network; hence, Pink, TLC, and Coyote do not have
direct access to it. You must store or retrieve files to HPSS in the yellow network and
transfer them to the Turquoise separately.

Your Home Directory

In the Turquoise network, the good news is that you have one; the bad news is that you can't
do much with it.

On Lightning, Flash, and Saguaro home directories are cross-mounted with other systems in
their respective networks - i.e., they are identical.

In the Turquoise network home directories exist only on local disk space on the front ends.
These should contain only dot files, although the .login file can be set up to move the user
directly to a cross-mounted working space. This differs from the user home space location in
the Yellow Network.

Per-user space in $HOME on the Turquoise network is limited to 50MB. This is tiny!
Remember: If your $HOME space fills up you will not be able to use LSF but the error
message you get will be obscure. Home directories are not designed for daily usage or
working space.

A full home space can also cause problems with X clients and again, the error message will
be obscure. Always remember to check for files with ls -al since there may be many
beginning with a period that won't show up with ls.

Page 12

Repeat: Home directories are not available on the Pink, TLC, or Coyote master nodes or on
the Pink, TLC, or Coyote compute nodes.

The Projects Directories

In the Turquoise network a new directory called /usr/projects has been created,
cross-mounted on all Turquose machines. Under /usr/projects, there are directories for
each project that has an Institutional Computing resource allocation. Under
/usr/projects/<your_project> you will find a directory for yourself (your moniker), as in
/usr/projects/<your_project>/<your_moniker>. You can use this area for storage.

Example: If your project is named W04_plasma the new directory will be called plasma.

To find which group you're in use the LSF bugroup command and grep for your moniker or
user id from the output.

You need to cd to the /usr/projects/<your_project> directory for the automounter to
mount it. If you just use ls, you might not see it. If you can't find your new working
directory, send email to consult@lanl.gov.

On Pink, TLC, and Coyote the $HOME and /usr/projects filesystems are not available on the
compute nodes. Panasas is the only filesystem available on the compute nodes on these
systems.

On Lightning and Flash NFS-mounted project spaces are mounted on all front ends, master
nodes, and slave nodes. On Lightnint the /netscratch filesystem is also mounted on all front
ends, master nodes, and slave nodes.

Your Scratch Directories

Panasas. Temporary ("scratch") storage on Lightning, Flash, Pink, TLC, and Coyote is via the
Panasas storage cluster and PanFS parallel filesystem, which is mounted as

/net/scratch1

and

/net/scratch2

and is common to all three Turquoise network clusters. These globally accessible filesystems
are on all front ends, BProc master nodes, and BProc compute nodes. This is where you want
to do your runs.

The Panasas file spaces ARE NOT BACKED UP.

Currently, there are no user-level quotas on Panasas. However, all of the Panasas file
systems have a hard quota that prevents any further writing when 95% capacity is reached.

Panasas is NOT on Saguaro. Instead, there is an NFS-mounted filesystem for temporary data
called ...we don't know yet. It might be /scratch. It might be /net/scratch or scratch1.
The important difference from Lambda is that it will be globally named, meaning it will have
the same name from the front end, from the master node, and from all compute nodes!

Panasas on Lightning. NOTE: BIG CHANGES COMING HERE. READ CAREFULLY. Temporary
("scratch") storage on Lightning is via the Panasas storage system and PanFS filesystem. The
mount point for these is changing and this requires action from current users.

The mount points for these on Lightning are /net/scratch1

and

/net/scratch2

but only until until Wednesday, April 5. On that date these will go to read-only. Two weeks
after that, these file systems will be unavailable.

On Lightning a new file system, called /scratch3, is available now with 87TB. Note the
change in naming convention (done to improve consistency between various LANL clusters).

You are required to migrate your data from the Lightning's /net/scratch1 and
/net/scratch2 file systems to /scratch3 as we plan to combine these into one big scratch

Page 13

file system. All user data will be DESTROYED in the /net/scratchX areas.

All of the Panasas file systems have a hard quota that prevents any further writing when
95% capacity is reached. there are currently no user-level limits.

NOTICE!!!! File purging for the Panasas file systems on Lightning will begin on February 13,
2006. The purge policy will be the same as what we have currently for the Q's/C's. You can
view that policy on http://computing.lanl.gov/article/161.html.

The Archive Directories

The Turquoise network has a new archive space via the NFS-mounted Tivoli Storage Manager
(TSM). The path is /archive/your_project/your_moniker. This is available on all Turquoise
systems, master and front ends only. To request space contact Tom Stup, whose e-mail is
tds.

In this space there is a 20-TB disk cache backed up by a 2-PB tape archive.

Saguaro and Grendels Filesystems

Grendels: Yellow-network NFS-mounted $HOME and project spaces are NOT mounted
anywhere. Grendels has its own, locally-mounted $HOME and scratch space (/scratch1).

Saguaro: Yellow-network NFS-mounted $HOME and project spaces are available. Additionally,
Saguaro has its own temporary scratch space, NFS-mounted as /scratch1.

Local BProc Filesystems

Each node has a local file space that is entirely RAM based. The only filesystem mounted
there is /tmp.

I/O would be very fast in this space. However, there are three enormous problems:

If this space fills, the node will crash. Remember that shared libraries exist in this
space, as does the OS.

The front ends and master nodes cannot see this space. Special BProc commands have
to be used to copy files to and from it.

This space is wiped when the node is rebooted.

Filesystem Summary

Available filesystems are summarized in the table below ("FE" means filesystem is mounted
on the front end; M = mounted on the master node; S = slave nodes).

Available Filesystems

Filesystem Lightning Flash Pink TLC Grendels Saguaro

NFS Home
Directory

FE, M, S FE, M, S pfe2
only

- - FE, M, S
not sure

NFS
/usr/projects

FE, M, S FE, M, S - - - FE, M, S
not sure

NFS
/netscratch

FE, M, S - - - - -

PanFS
/net/scratch1
&
/net/scratch2

FE, M, S FE, M, S FE,
M, S

FE/M, S - -

Local Home
Directory

- -

pfe1
&

pink
only

FE/M FE, M, S -

Turquoise
/usr/projects

- -

pfe1
&

pink
only

FE/M - -

/scratch1 - - - - FE, M, S FE, M, S

/archive - - FE, M FE/M - -

Page 14

File Transfer

For Lightning, Flash, and Grendels use scp to transfer code/data between these clusters and
other systems on their respective networks.

The give command is on Lightning and Flash.

The recipient should copy the file from

/net/givedir/userid.

The destination directory is global across all Lightning segments and front ends but
can't be seen from any of the other LANL clusters.

give is not on grendels, pink, or TLC.

To transfer a file from the Yellow network to Mauve, Pink, or TLC you need a "two-hop" scp.
Examples of transfers in both directions are shown below. Transfers from Turquoise to the
Yellow must be initiated from the Yellow network.

 scp Between Yellow and Turquoise Networks

qscfe1% scp hjw@wtrw.lanl.gov:mauve:/scratch/hjw/file1 .
hjw@wtrw.lanl.gov's password:
file1 100% |*******************************| 2900 00:00

qscfe2% scp file2 wtrw.lanl.gov:pfe1.lanl.gov:/net/scratch/hjw
hjw@wtrw.lanl.gov's password:
file2 100% 33KB 1.8MB/s 00:00

File Transfer Agents (FTAs)

File Transfer Agents are special hardware units for transferring files. Their purpose -- and the
way you use them -- differs amongst the various networks.

On Lightning use FTAs via LSF to transfer files to/from HPSS. See the HPSS section below for
more info.

On Turquoise network machines use FTAs via scp, sftp, or rsync to transfer files to/from
yellow network machines.

Turquoise Network File Transfer Agents

For data in the Turquoise /usr/projects spaces or on PanFS, the file transfer agents (FTA)
tetsuo and akira are available for direct sftp or scp. More info is available on the Turquoise
web page. Here are examples of the usage of tetsuo.lanl.gov:

 scp Between Yellow and Turquoise Networks

qscfe1% scp tetsuo.lanl.gov:/usr/projects/support/hjw/data .
hjw@tetsuo.lanl.gov's password:
data 100% 3844 110.8KB/s 00:00

qscfe1% sftp tetsuo.lanl.gov
Connecting to tetsuo.lanl.gov...
hjw@tetsuo.lanl.gov's password:
sftp> cd /net/scratch1/hjw
sftp> ls
.
..
1GB
3GB
datafile

Page 15

fakedata
tmp

The Module Command and Modulefiles

In this section we assume that you know how to use the module utility and modulefiles. If
you don't, read the introduction on computing.lanl.gov.

There are important differences in the way modules are implemented on Lightning, Flash,
and Pink - they are very different from other LANL systems and they are still evolving on the
BProc systems.

Modulefile names have descriptive prefixes on these systems. The prefixes are package
based, such as "Intel," "totalview," and "lampi."

Where a package has more than one modulefile available, one will generally be designated
as "(default)." You can use this modulefile by just giving its package name. Example below.

If a package does not have a default (true only for "Intel") you can still specify the
modulefile giving just the package name; however, the modulefile you'll get is the one with
the lowest alphanumeric string.

There are also modulefile "groups" (compiler, mpi, debugger, tools, misc). When you list
available modulefiles the groups are set off from one-another, and the group name is always
shown on the left. The groups are also listed alphabetically.

You cannot load conflicting modulefiles, such as two MPI packages or two Fortran compilers.
An error will result. If you want to override this you can, by setting an environment variable
BUT YOU NEED TO BE CAREFUL -- OKAY YOU HAVE BEEN WARNED!!!!:

setenv IGNOREMODULECONFLICTS 1

Be careful if you expect environment variables such as CC to be set.

A new module command is module help <Group_name>, which simply lists all modulefiles
available for a given group.

Here are some examples:

 Modulefile Usage on BProc Systems

lc-1% module avail
-------------- /usr/share/modules/modulefiles/compiler -----------------
Compilers: intel/8.1-fortran nag/4.2-x86 pgi/5.2-4(default)
absoft/8.0 lahey/6.1e(default) nag/5.0-x86(default)
intel/7.1 lahey/6.2 pgi/5.0-2
intel/8.1-c nag/4.2-amd64 pgi/5.1

--------------- /usr/share/modules/modulefiles/debugger ----------------
Debuggers: totalview/6.5.0-2(default)
totalview/6.4.0-2 totalview/6.6.0

----------------- /usr/share/modules/modulefiles/misc ------------------
Misc: module-info modules use.own

----------------- /usr/share/modules/modulefiles/mpi -------------------
MPI_Libraries: lampi/1.5.8 mpich/1.2.5
lampi/1.5.10(default) lampi/1.5.9

---------------- /usr/share/modules/modulefiles/tools ------------------
Tools: flint/5.00.20 purify/6.0
hdf5/1.6.1 procmon/2.0.2
ups/2.7.3 valgrind/2.2.0 vampir/3.5.0-lampi(default)
java2sdk/1.4.2

Page 16

lc-1% module load lahey
lc-1% module list
Currently loaded Modulefiles:
 1) lahey/6.1e
lc-1% module avail lampi
lampi/1.5.10(default) lampi/1.5.8 lampi/1.5.9
lc-1% module load lampi
lc-1% module list
Currently loaded Modulefiles:
 1) modules 2) lahey/6.1e 3) lampi/1.5.10
lc-1% module load intel/8.1-c
lc-1% module load intel/8.1-fortran
ERROR: Module 'intel/8.1-fortran' conflicts with a currently
 loaded module 'lahey/6.1e'

The module command has the following (typical) options.

module avail List all available modulefiles.

module list List all loaded modulefiles.

module load modulefile [modulefile ...] Load modulefile[s] into the current shell
environment.

module unload modulefile [modulefile ...] Unload modulefile[s] from the current shell
environment.

module switch modulefile1 modulefile2 Unload modulefile1 and load modulefile2.

module show modulefile Display information about a modulefile.

module help modulefile Display information about a modulefile.

module whatis modulefile Display information about a modulefile.

You don't need to initialize the modules environment; the system default is to permit their
use.

On all BProc systems you can use the module command on the front ends. (Different from
how other LANL systems work.)

This means you can use them before llogin.

More info on using modules in scripts later, after we've learned how to run jobs.

As with other LANL system, error messages associated with modulefile problems can be
obscure. The following example error message results from not preloading an MPI
modulefile:

 Sample Error From Not Loading MPI Modulefile

ll-2% mpirun -np 4 sweep3d.mpi
One of --gm or --p4 is required.

Another good one is "Not enough nodes to allocate all processes."

Also, some of the compilers require that you load their modulefile just to run (not to compile
or link). An example of an error message you'd get (from the Intel compiler) if you forget
this is:

 Sample Error Message From Not Loading the Intel

Compiler Modulefile

a.out: error while loading shared libraries: libimf.so:
cannot open shared object file: No such file or directory

Page 17

Exercise #3: Working With Modulefiles and Filesystems

 1. Type the command module avail. Then try to figure out what will be the result of "module
load compiler. What will be the result of " module load intel?" See if you are correct.

 2. Determine how much space is available in both of the Panasas scratch filesystems. Write
your answers here:

Filesystem Size Used Avail Percent Used

/net/scratch1

/net/scratch2

 3. Make sure you have a directory in both of the scratch filesystems. Type

cd /net/scratch1 and then ls -al

and look for your user id. Verify that the permissions are as you want them. Then do the
same for /net/scratch2.

This ends the third exercise.

Submitting Jobs

Basic Job Submit Process

LSF is on Lightning, Flash, Pink, Grendels, and TLC, and you must use it to submit jobs to run
on the slave nodes. As with other LANL systems, you can submit both interactive and batch
jobs.

If you don't use LSF your job will run on the front end nodes. You don't want to do this!!

This is different from some other LANL systems (e.g., Q) where you can't execute on
the front end generally.

Terminology: On BProc machines users never "log in" to the slave nodes; you're never "on"
the slave nodes. However, you still have to use LSF llogin to run interactively!

Using LSF is a necessary but not a sufficient condition. The job submission process potentially
involves a combination of LSF and a BProc command. The LSF commands are the same as on
other LANL systems; the BProc command will be covered in detail below.

The basic process is, you first use LSF to obtain an allocation of slave node processors; then
when you run your program BProc will migrate it to the processors LSF allocated to you.

Interactive use appears a little bit different than on other LANL systems. If you run
interactively using llogin, (or, equivalently, use bsub -Is ...) you are allocated
slave node processors by LSF but your shell will be on the master node. On BProc
systems you can never have a shell on a slave-node system.

Of course, when llogin runs it starts a new shell on the master node.

Note that on Lightning, Flash, and Pink the front end is different from the master
node(s). However, currently, on TLC, the front end is the same as the master node. So
when you use llogin on TLC, LSF allocates slave node processors for you and gives
you a new shell on the master node.

Page 18

The syntax in the figure above is approximate; other llogin, bpsh, bsub, and/or mpirun
options may be used.

Note: Currently, OpenMP and pthread codes do not work on any of the 32-bit BProc systems.
This is a kernel limitation that is removed in the 64-bit systems

Two examples of interactive use are shown below for Lightning and TLC. The user has used
ssh to log in to the front ends, either lc-1 or tlc.lanl.gov.

She then submits llogin to the default interactive queue requesting 6 processors. Three
nodes are allocated to her, on the LSF host ll-2 in the first case, and on tlc in the second. Her
login shell starts on the master node associated with these, which in the Lightning case is a
different machine than from where she issued llogin but in the TLC case is the same as
where she issued llogin.

Now she can run interactively using the nodes 4, 11, and 12 on Lightning and 1 through 3 on
TLC. If she wants to use all three she'll run a code using mpirun If she wants to use
just one node she'll run a code using bpsh

Page 19

 Obtaining a Slave Node Allocation Using llogin: Lightning

she@lc-1% llogin -n 6
Job <112> is submitted to default queue <lightq>.
<<Waiting for dispatch ...>>
<<Starting on ll-2>>
NODES: 4,11,12

she@ll-2% bjobs
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
942 she RUN smallq lc-1 6*ll-2 llogin Jan 29 10:44

she@ll-2% hostname
ll-2.lanl.gov

she@ll-2% env|grep NODE
NODES=4,11,12
NODELIST=4,4,11,11,12,12

 Obtaining a Slave Node Allocation Using llogin: TLC

she@tlc% hostname
tlc.lanl.gov

she@tlc% llogin -n 6
Job <112> is submitted to default queue <devq>.
<<Waiting for dispatch ...>>
<<Starting on tlc>>
NODES: 1-3

she@tlc% bjobs
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
942 she RUN devq tlc 6*tlc llogin Jan 29 10:44

she@tlc% hostname
tlc.lanl.gov

she@tlc% echo $NODES
1,2,3

X Authorities on Pink

Special note about X from Meghan Quist of the ICN Consulting Office: Because home
directories are not shared between the Pink front end pfe1 and the pink master node, when
you ssh to pfe1 an .Xauthority file with DISPLAY information is made but when you llogin to
pink (see below) you don't get the new entry. So, for now, you must manually add it. Here's
how:

 Setting X Display on Pink

pfe1% env | grep -i disp

DISPLAY=pfe1.lanl.gov:24.0

pfe1% xauth list
pfe1.lanl.gov:24 MIT-MAGIC-COOKIE-1 259c48a166888d56918c111c11111c1c

pfe1% llogin
< snip - llogin stuff not shown >

pink% xclock
X11 connection rejected because of wrong authentication.
X connection to pfe1.lanl.gov:13.0 broken (explicit kill or
server shutdown).

Page 20

pink% xauth add pfe1.lanl.gov:24 MIT-MAGIC-COOKIE-1
259c48a166888d56918c111c11111c1c
pink% xclock (This WORKS!)

LSF on BProc Systems

The front-end systems for the BProc clusters (lc-1 through lc-64, ffe1, ffe2, ffe-64, pfe1, tlc,
gfe1, and sfe) are LSF submit hosts. This means that you can run all LSF commands from
these systems; i.e., you can submit jobs from there with bsub; you can llogin from there;
and you can monitor job progress using bjobs from there.

Which segment of the multisegment systems (Lightning, Flash, Coyote) your job lands on
depends on the LSF queue structure. Note that this is consistent with the way LSF works on
all LANL clusters. Also, remember: no cross-segment jobs.

(Currently, the Lightning systems (ll-1, ll-2, ll-3, ll-4, ll-5, and ll-6) and (lb-1, lb-3, lb-4, lb-5, and lb-7) are

simultaneously front ends, LSF hosts, and BProc master nodes. This is expected to change soon, after which,
they will no longer be front ends.)

 Sample Output From "bhosts -w" on Lightning, October,

2005

ll-1% bhosts -w
HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV
ll-1 ok - 510 502 502 0 0 0
ll-2 ok - 510 124 124 0 0 0
ll-3 closed_Full - 510 510 484 0 0 0
ll-4 ok - 510 2 2 0 0 0
ll-5 closed_Full - 510 510 256 0 0 0
ll-6 ok - 172 0 0 0 0 0
ll-fta0 ok - 2 0 0 0 0 0
ll-lsf closed_adm - 1 0 0 0 0 0

Page 21

 Sample Output From "bhosts -w" on Pink

pfe1% bhosts -w
HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV
pink ok - 1916 1647 871 0 0 376

On Pink and TLC there is only one LSF execution host containing all the nodes in either of
those machines. Also, the pink front end pfe2 is NOT an LSF submit host.

Jobs are allocated entire nodes on all LANL BProc systems, regardless of the actual number
of CPUs requested.

When you are given an allocation of CPUs/nodes through LSF on LANL BProc systems two
environment variables associated with BProc are set: NODES and NODELIST. See the above
example.

NODES specifies which nodes the LSF job can use.
NODELIST lists the processors on each node that the LSF job can use

LSF has recently been changed so that $NODES is also echoed directly in your LSF output.

As with other LANL systems, use bkill to kill jobs. However, on BProc systems jobs are
sometimes reluctant to die. Use these steps (in order):

 1. bkill job_id. If unsuccessful, try

 2. bkill -r job_id. If unsuccessful, try

 3. bjobs -l job_id | grep PGID and then kill -TERM PGID. If unsuccessful, try

 4. bjobs -l job_id | grep PGID and then kill -KILL PGID. If unsuccessful, try

 5. mail consult@lanl.gov. Don't forget to mention which machine and which jobid.

Selecting an LSF Execution Host

On Lightning and Flash there are now machine groups and LSF resources defined that allow
you to select different portions of these clusters.

On Lightning and Flash use the -m segment_name option to bsub or llogin, where
segment_name is flasha, flashb, or flashc on Flash and ll-1, ll-2, ... ll-6 on Lightning.

On Lightning the following resources are also defined. Select them with the
"-R resource" option to bsub or llogin.

Lightning Cluster LSF Resource
Definitions

mem4: 4-GB memory per node;

mem8: 8-GB memory per node;

os32: 32-bit LINUX;

os64: 64-bit LINUX;

fta: File Transfer Agent;

s_core: single-core Opteron processor;

d_core: double-core Opteron processor

ll Uses an ll (Lightning only) host

lb Uses an lb (Bolt only) host

Remember that queue structure may prohibit certain combinations of these resources.

LSF Queues

This section is provided for illustrative use only. Configurations will undoubtedly change as
usage grows. You should log in and use bqueues -l to see current info.

Page 22

The LSF queue structure is rather different amongst the BProc machines and is also different
in some ways than other LANL systems. Note the following:

Fairshare is enabled (queue-based) on all BProc machines and static shares represent
project allocations set by the program offices.

On Pink there is a new nightq. Nightq accepts jobs anytime, but it will only consider
starting jobs from 8:00 pm until 8:00 am and will only run a job if it can complete by
8:00 am. While this queue is active, devq may not have processors available for
llogins.

Flash has 4 general-access queues: largeq and longq for 32-bit production jobs, debugq
for 32-bit development and debugging, and flash64q for 64-bit jobs.

Lightning has 3 general-access queues: devq, largeq & smallq. Other queues are for
special groups of users, identified by the MMC.

The bpsh Command

The bpsh command is used to run a sequential command on a slave node.

The general syntax is:

bpsh [bpsh options] node_# command [command args]

node_# is the node you were allocated by LSF expressed either as an actual numeric value or
as the symbolic representation $NODES.

Note: Use bpsh for sequential commands only. If you give bpsh a nodelist containing more
than one node, it will run copies of the same command on each node.

Examples (note: all of these assume you've used LSF first, to obtain an allocation of slave
nodes):

 bpsh 68 a.out Run a.out on node 68

 bpsh $NODES mcnp input=inp output=outp An example using the environment
variable; typical usage for
single-processor runs; (assume $NODES
contains a single node)

 bpsh -p $NODES hostname Another example using the environment
variable, which, here, can contain
multiple values; -p prefixes each line of
output with node identifier

 bpsh -p 1,2,3,4 hostname > output Execute the hostname command on
nodes 1-4

If you try to bpsh something on a slave node on which you don't have an allocation you will
get an error message:

 Error Message From bpsh Without an LSF Allocation

ll-1% bpsh 1 ls /tmp/hjw
1: Operation not permitted

ll-1% bjobs
No unfinished jobs found.

It also goes without saying that you cannot bpsh from a front end!

Remember:

bpsh doesn't run a remote shell on the slave node. Commands expecting shell
interpretation may fail. Wildcards are expanded by/on the master node, not on the
slave node(s). Any shell interpretation of a bpsh command always takes place on the
master node.

Page 23

DO NOT use bpsh with the give command.

DO NOT execute things such as perl, csh, etc., using bpsh. Run your scripts on the front ends
and have the scripts use bpsh only for applications. There is a Perl interface to the BProc
library, though. Type man BProc to find out about it.

DO NOT run the module command on a slave node using bpsh. This will not work. Both
interactively and in a batch script run the module utility on the front end, and the
environment that is set up as a result will be transferred to the slave node(s) when you
execute your a.out.

The following example uses a batch script file. THIS IS AN EXAMPLE ONLY; IT MAY NOT
WORK ON ALL SYSTEMS. The things to note are:

- Do NOT use bpsh with module load

- Do NOT use bpsh with cd

- Do NOT use #BSUB with bpsh

 Batch BProc

user@lc-1% cat myscript
#!/bin/tcsh
Batch Script for submission of two executables
on a BProc system.
MAKE SURE YOU SUBMIT THIS AS bsub < script
BSUB lines with 2 ## are comments and are not interpreted
#
#BSUB -n 4
#BSUB -q smallq
##BSUB -q testupq
##BSUB -q devq
#BSUB -L /bin/tcsh
#BSUB -J "hjwTestRun" # Specify job name
#BSUB -o job.%J.out -e job.%J.ouch

module load intel/8.1-fortran
module load lampi

cd /net/scratch1/hjw/SWEEP

set one_node = `echo $NODELIST | awk -F, '{print $1}'`

bpsh $one_node sweep-single.intel

mpirun -np 2 sweep-mpi.intel

psi store outp

user@lc-1% bsub < myscript
<<Job <72439> is submitted to the queue <largeq>

Using MPI on BProc Clusters

To run an MPI job on a BProc cluster you use mpirun as the job launcher. Do not use bpsh for
this because mpirun is already "BProc-aware."

However, you must supply the -n or the -np argument to mpirun even if you supply this
argument to bsub. (Not the case with Blue Mountain, for example.)

Note: This will no longer be the case starting with LAMPI version 13.

Two key things to be careful of: It is possible to execute mpirun on a front end (all
machines) or master node (Lightning only) without using LSF first; however, your job will
execute entirely on the front end or master. You don't want to do this! (Other systems

Page 24

prohibit it.)

It also is possible to accidentally run an MPI job requesting more processors than you were
allocated from LSF (using -np); however, this will oversubscribe the processors that you
were allocated.

As mentioned before, you must load an MPI modulefile in order to run.

Do NOT "hardwire" the path to mpirun in your scripts. Let the modulefile load handle this.

There is an extra "administrative" MPI process created per node when you execute an MPI
job using LAMPI on all BProc clusters. This process is mostly in the "S" (suspended or sleep)
state and doesn't accumulate very much (or any) CPU time.

Also, beware of differences in LAMPI installation directories (/opt vs. /usr in latest
versions).

Additional note: If you insist on using MPICH make sure you run with mpirun -np # --nper
2. Failure to include this additional parameter will yield the error message "Not enough
nodes to allocate all processes". It is recommended that you switch to LAMPI, too.

Exercise #4: Using LSF and bpsh

 1. First, make sure that you've logged in to a front end using ssh.

 2. Issue the LSF llogin command to get an allocation of one node.

 3. After LSF dispatches your llogin job which machine are you on? Are you on the front end,
the master, or a slave node now?

 4. Determine which slave node were you allocated by LSF. There are at least 2 ways to do this.

Write the answer here: ____________________

 5. Pink or TLC Users Only: Issue the following commands and explain the result you see:

 1. cd

 2. pwd

 3. Take the result of that last command and run
bpsh $NODES ls result_of_last_command

 6. Issue the following two commands and explain the result you see. Use some unique file
name; in other words, substitute your moniker.

bpsh $NODES date > /tmp/moniker_file

bpsh $NODES cat /tmp/moniker_file

 7. Now exit from your llogin session.

 8. Store a file to HPSS using the hpssq. Do it two ways: interactively and from a batch script or
from a batch command line submission.

This ends the fourth exercise.

Monitoring Job/System Status on LANL BProc Systems

Page 25

On LANL BProc systems there are essentially 3 ways of finding out what's happening on the
system:

 1. The Unix way;

 2. the LSF way;

 3. and the BProc way.

Differences between these 3 ways:

The Unix and BProc methods only work on a BProc master node; they do not work from
the front ends.

On Lightning and Flash, the BProc and Unix methods give status information only for
the particular segment on which they are run.

In contrast, the LSF commands provide cross-segment status, meaning you can run
them from front end and/or master node and get status information for the entire
cluster.

 1. Unix commands: top and ps. They are segment-specific, meaning if you run one of these
commands on ll-2 you'll only get information about ll-2.

The Unix ps command, if run on a master node, will show all processes, master node
and slave node. Slave-node processes are listed with [square brackets].

See the ps man pages for list of options; typical ones are -aux and/or -efl.

Important use of ps: bpsh $NODES ps axmv will show you how much memory your
code is using as it runs on a slave node.

 Using the Unix ps Command to See Memory Usage

ll-2% bpsh $NODES ps axmv
 PID TTY STAT TIME MAJFL TRS DRS RSS %MEM COMMAND
11981 ? R 0:31 352 383 67832 66324 1.7 sweep3d.single
12047 ? R 0:00 175 66 2449 664 0.0 ps axmv

(An alternate method of observing memory behavior is available here. The software is
in /usr/projects/ups/PROCMON/v-02-02-01/ on qsc, flash, qa, qb, and lightning.)

The Unix top command provides an ongoing look at processor activity in real time.
Note that unlike ps, if your run top on the master node, slave node processes ARE NOT
displayed with square brackets. So there's no way to distinguish. However, see bptop,
below.

After you type top you can type u and give a user id to restrict the top display to that
user.

 2. LSF commands: bjobs. A cross-segment command with same syntax as on other LANL
systems.

 3. BProc commands: bpstat, bpps, and bptop. These must be run on a master node to work;
if you run them on the front end they give really strange error messages on some of the
systems (and basically nothing on the others). On Lightning they all give segment-specific
information.

bptop is a special BProc version of the Unix top command. Use this to interactively
display either BProc or non-BProc processes in a "top-like" fashion. Use "c" to toggle
back and forth between either BProc or non-BProc processes.

The bpstat command shows the status and owner of the slave nodes.

up node is up and available

down node is down or can't be contacted by master

boot node is coming up (running node_up)

error an error occurred while the node was booting

Page 26

Make sure you understand how to relate the bpstat and bjobs -u all output in
the following example.

 Sample bpstat and bjobs Output

ll-2% bpstat
Node(s) Status Mode User Group
0,2,12,13 down ---------- root root
251 error ---x------ root root
1,4-11,14-53 up ---x------ gre desktop
27-34 up ---x------ jnu desktop
56 up ---x------ scb desktop
57-58 up ---x------ hjw desktop
3, 59-255 up ---x------ root root

ll-2% bjobs -u all
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
6503 gap RUN devq ll-1 4*ll-1 /tcsh -l Mar 8 15:11
6482 gre RUN devq ll-1 98*ll-2 viz_job Mar 8 13:29
6488 jnu RUN devq ll-2 16*ll-2 llogin Mar 8 14:16
6489 scb RUN devq ll-3 2*ll-2 llogin Mar 8 14:18
6503 hjw RUN devq ll-1 4*ll-2 /tcsh -l Mar 8 15:11
6503 hjw RUN devq ll-1 16*ll-3 /tcsh -l Mar 8 15:11

Whereas bjobs -u all shows info for the entire Lightning cluster (all 6
segments) bpstat shows only info local to the BProc master node on which it is
run. BProc operations only access a single Lightning cluster segment.

Nice bpstat options: bpstat -t allup tells how many nodes are up. Other
options include alldown, allunavailable, etc.

The bpps command is a special version of bpstat; it is basically bpstat with
ps-formatted output.

bpps will return info about any user job running on the slave nodes (not just your own)
but it will not return anything unless a user job is running (and llogin does not count,
since it doesn't run on the slave nodes).

bpps Returns info about all jobs on the cluster segment.

bpps -u userid Return info about a specific user.

bpps -k List processes sorted by node.

bpps -s Ignore processes in the S state.

 Using the bpps Command

ll-2% bpps
NODE USER PID PGID S STIME TIME COMMAND
3 hjw 24774 24747 R 10:36 00:03:02 [sweep3d.mpi]
3 hjw 24775 24747 R 10:37 00:02:12 [sweep3d.mpi]
3 hjw 24784 24792 R 10:38 00:01:26 [sweep3d.mpi]
1 lpm 9069 29044 R 9:59 00:42:06 [MPIping]
1 lpm 9091 29044 S 9:59 00:42:06 [MPIping]

IMPORTANT use of bpps: It turns out that, similar to other systems, jobs that terminate
in certain ways don't always clean up after themselves. Sometimes this can happen
when you interrupt a job using CNTRL-C. Anyway, it's a good idea to use bpps to see if
any "zombie" processes remain.

Exercise #5: Monitoring and Running Jobs

Studying the Machine Status

Page 27

 1. Use the LSF bjobs -u all command to find all jobs on the system. You may have to pipe
this to more. Or less.

 2. Pick one or two jobs that are in the "RUN" state from the previous step, and figure out which
nodes these jobs are using.
Write the answer here:
user:________node(s):__________
user:________node(s):__________

 3. How many nodes does bpstat show as down?
Answer: ______________________
How many nodes does bpstat show as unavailable?
Answer: ______________________
How many nodes does bpstat show as up but not allocated to anyone?
Answer: ______________________

 4. Determine if anyone is running a job on the master node or on a front end that shouldn't be
run there. There are several ways to do this. Make sure you try at least one way.

If you find such a job, feel free to send a polite but firm e-mail to that user. Explain to
him/her:

- Everything that you've learned about BProc;

- Why it's important not to run big jobs on the master node;

- How to tell the difference between processes running on the master and processes
running on the slave.

You might want to dictate this letter to yourself regardless of what you find.

This ends exercise 5.

Running Codes

 1. Now you want to execute two applications on the slave node systems. One will be a
single-processor application, the other will be an MPI application to be run on two (2)
processors.

You will need two windows on the class machine to do this exercise.

 2. The instructor has used the give utility to give you a file called "class.tar." Get the file and
copy it to a filespace that you own. Do you remember where a file goes when someone uses
give?

 3. Type the command "tar xvf class.tar" to extract all the files; then do "ls." You should see
the following files:

sweep-single
sweep-mpi
sweep-single.f
sweep-mpi.f
timers.c
input
testsize.c
testsize.f

 4. Run the sequential binary (sweep-single) so that it runs on a slave node.

Note: You need to load the compiler modulefile for Intel version 8.1 first.

Do this any way you choose - interactively or batch. Verify WHILE IT IS RUNNING that it is
running on a slave node. Do this with a Unix command or a BProc command IN ANOTHER
WINDOW. The application normally sends its output to the terminal; you'll know it completed
when it shows a "Wall grind time."

 5. Run the MPI binary (sweep-mpi) so that it runs on 2 slave-node processors. The output
looks basically the same - you should look for the "Wall grind time." Verify, again, WHILE IT

Page 28

IS RUNNING, that it is running on the slave nodes.

This ends the fifth exercise.

Additional Monitoring Tool

An additional method of studying machine status: Use the ICN Monitoring Web Site
http://icnn.lanl.gov/drm/alljobs. Try it!

HPSS

The High-Performance Storage System (HPSS) is used to archive your valued data, large or
small, for long periods of time in a safe and secure environment.

HPSS is available in the secure and yellow networks. It is not available in the Turquoise
network.

You should use the LANL psi command to access HPSS. You can use it on the front ends and
the master nodes but it is not available on the compute nodes. There is NO HPSS access
from the compute nodes.

File Transfer Agents on Lightning, Flash, and Saguaro

The best way to do HPSS transfers on these systems is to use the FTAs.

On Lightning the LSF queue to access this hardware is hpssq. On Flash it is called ftaq.

Using hpssq you can run jobs such as these:

 Batch: bsub -q hpssq [other bsub options] psi [psi options] psi_command

 Interactive: bsub -q hpssq -Ip [other bsub options] psi

See http://computing.lanl.gov/article/478.html for complete details. There is also a
presentation from the SUF that you can download there.

On Lightning, using hpssq will cause HPSS transfers to run on the FTAs. On Flash, using hpssq
(in the same way as above) will cause HPSS transfers to run on the front ends, at least until
the FTA hardware is installed.

The reason to use hpssq is to reduce computation and network traffic on the front-end and
master nodes (Lightning), to use the XPSI interface (Lightning), and because neither PSI nor
XPSI is available on the slave nodes (Lightning and Flash).

More Hardware Details

Opteron Processor (Lightning and Flash)

The AMD Opteron microprocessor in Lightning and Flash features an Instruction Set
Architecture compatible with (and built upon) the Intel x86 architecture. A schematic of the
architecture appears below. You can see a photograph of the die here.

Opteron hypothetical floating-point throughput:
Double-precision (64-bit): 1 add + 1 mult = 2.2 GFlop/s
Single-precision (32-bit): 2 add + 2 mult = 4.4 GFlop/s

Opteron Memory Hierarchy For Floating-Point Data:

Level Capacity Access Time
(Clock Periods)

Registers varies (see below) 1

Page 29

L1 Cache 64 KB 3

L2 Cache 1 MB 12

Main Memory CPU0 varies ~134

Main Memory CPU1 varies ~206*

*Data from "Lightning: A Performance and Scalability Report on the use of 1020 nodes," by Kei Davis
Adolfy Hoisie Greg Johnson Darren J. Kerbyson Mike Lang Scott Pakin Fabrizio Petrini, LANL CCS-3,
http://www.c3.lanl.gov

Opteron includes an integrated (on-chip) memory controller, intended to reduce DRAM
memory latency and increase memory bandwidth. It eliminates the need for a front-side bus
and runs at the processor speed, (not at the bus speed, as it did in older processors).

A new technology called HyperTransport is used as the on-chip interconnect interface. Each
Opteron has 3 HyperTransport data links (two for communication between processors, one
for the rest of the system). Each HyperTransport link has a peak transfer bandwidth of
6.4GB/s.

The dual HyperTransport links for CPU data are coherent links that share the memory and
cache space between the two processors in a node. Each of these processors has one-half of
the node's memory. This means two things:

 1. A single malloc can only access one-half the total memory per node (2 GB or actually,

Page 30

about 1.75 GB after the OS grabs its share); and

 2. When a processor accesses memory from the other processor in a node there can be a
25% - 50% increase in memory latency.

A single node of the Lightning cluster physically looks like this. The compute nodes are
mounted five to a "sub-chassis" (pictured here. and there are four sub-chasses per standard
19"-deep cabinet.

The Opteron processor is also being used in the Sandia National Laboratory Red Storm (that's
a PDF file) supercomputer (provided by Cray, Inc.) and other supercomputers from Cray.

Newer versions of the Opteron are available in a dual-core architecture and one segment of
Lightning will use these. A schematic of the architecture is shown in the figure below. The
key points are that each core has own separate L1/L2 cache hierarchy but the cores share
the Integrated Memory Controller and HyperTransport links.

Xeon Processor (Pink)

Will not be covered here. See http://asci-training.lanl.gov/Pink/index.html#HardwareArch
and references therein.

Myrinet

The System Area Network (SAN) in Lightning, Flash, and Pink is a cost-effective,
high-performance, packet-communication and switching technology called Myrinet, from
Myricom, Inc.

Myrinet consists of four basic parts: a host interface that connects to the computing nodes'
PCI I/O bus, a low-latency, high-bandwidth communication switch, Myrinet fiber-optic cables,
and some low-level Myrinet message-passing software known as GM.

The basic building block of the Myrinet network is a single-chip 16-port crossbar switch.
Cards containing this switch are combined into a single enclosure supporting up to 128 hosts.
Federated networks are created combining these 128-host enclosures, organized as either
"leaf/line" switches (connecting to NICs) or "spine" switches (connecting other switches).

There is one "rail" of interconnect. Measurements on Myrinet have shown an MPI round-trip
latency of 6-7 microseconds and a peak transfer bandwidth of about 250 MB/s per link.

Myrinet uses a Clos network topology, a multi-stage, non-blocking network, similar to a
fat-tree (bandwidth scales as log # of processors).

Lightning has a single network for the entire cluster that could scale to 2,048 hosts. There
are two levels of line switches and a top level set of spine switches. Worst-case transmission
involves 7 switch hops.

A schematic of a smaller Clos network is here . Each of the 16 sub-networks at the bottom
layer of this diagram is actually a full-bisection 64-host network:

Page 31

Myrinet is a source-routed network. i.e., each host must know the route to all other hosts
through the switching fabric.

For the current version of Myrinet there's a Mapper program running as a user process
on each node that automatically discovers all of the hosts connected to the Myrinet
network, computes a set of deadlock-free minimum-length routes between the hosts,
and distributes appropriate routes to each host on the connected network. (The next
version is supposed to have it running as a kernel thread.)

On Lightning we use a mapper written by Erik Hendriks, of CCS-1. You can read a
paper about it (PDF format).

Porting Considerations

Perhaps the most important issue, one that takes a bit of getting used to, is that there are no
shells on the slave nodes. All shell scripts and shell commands must be run on the front
ends.

Other key issues to be aware of include: data format, if transferring data from Q or C*
systems, 64-bit IEEE floating point, 64-bit pointers, system calls, and OpenMP support.

Big Endian vs. Little Endian

This refers to the order in which the machine stores the bits of a word. It is a characteristic
of the processor. The following table shows byte order for important systems at LANL:

Byte Order of Some Important
Systems

Machine Processor
Byte
order

ASC Q DEC/Compaq/HP
Alpha EV68

Little
Endian

Lambda, Pink, Grendels,
Lightning, Flash, Coyote,
Saguaro

Intel Pentium Little
Endian

Blue Mountain MIPS R10000 Big
Endian

Page 32

Mauve Intel Itanium Littl
Endian

ASC White IBM Power Big
Endian

Two basic Endian-related issues:

Code or compilation issues

Dereferencing pointers on Blue Mountain vs. Q. Thanks to John Daly for providing
this example. Consider the following C program:

#include main()
{
 long *a;
 int *b;
 a = (long *) malloc(8);
 a[0] = 0x1234567890abcdef;
 b = (int *)a;
 printf("A: %lx, B: %lx %lx\n", a[0], b[0], b[1]);
}

On Blue Mountain this program yields:

 Pointer Dereferencing on Blue Mountain

t01% cc -64 -o end.theta.64 end.c
cc-1178 cc: WARNING File = end.c, Line = 9
 Argument is incompatible with the corresponding format
string conversion.

 printf("A: %lx, B: %lx %lx\n", a[0], b[0], b[1]);
cc-1178 cc: WARNING File = end.c, Line = 9
 Argument is incompatible with the corresponding format
string conversion.

 printf("A: %lx, B: %lx %lx\n", a[0], b[0], b[1]);
t01% end.theta.64
A: 1234567890abcdef, B: 12345678 ffffffff90abcde

On Q this program yields:

Page 33

 Pointer Dereferencing on Q

qsc10% cc end.c -o end.q
qsc10% end.q
A: 1234567890abcdef, B: ffffffff90abcdef 12345678

Runtime issues

Data files written out on Blue Mountain or Theta must be converted to
little-Endian format before they can be read on Q, Lightning, Flash, and Pink
systems.

Let's say you have a data file that you created on machine Blue Mountain that
you want to read in to a Fortran program on Lightning. Some of the Fortran
compilers on Lightning have compile-line options that convert the file on the fly.

To Convert a data file from big- to little-Endian in C you have to write your own
routine to reverse the bit order. Or you can use the one the consultants have
here.

Compiling

CompileNodes

Lightning, Flash, and Pink clusters have special nodes used for compiling. You don't compile
on the BProc master or slave nodes. The compile nodes are the same as the front ends.

This means you don't llogin before compiling, which is different from other LANL
systems.

For example, on Pink, compile on pfe1 and/or pfe2. The compilers WILL NOT work on
the BProc master node, pink.lanl.gov.

There are no slave nodes associated with the compile node(s). After you log in to the
compile node (with ssh), simply module load whatever modulefiles you need, and
start compiling. No BProc commands are needed to build your code; just use "make" or
"configure" or "f95" or whatever.

All compile nodes have 2 CPUs. Parallel builds are limited to 2 processors.

CPP is in /usr/bin/cpp

perl is in /usr/bin/perl (NOT where it is on theta or QSC!)

32- Vs. 64-Bit Computing

The Opteron microprocessor in Lightning, Flash, Saguaro, Coyote, and TLC is a native 64-bit
architecture.

However, we have been using Lightning and Flash in what is called "Legacy Mode," which is
designed to be fully compatible with 32-bit Intel systems. In this mode the operating system
itself is a 32-bit OS and the compilers have been generating only 32-bit binaries. See the
table below.

This has had four important effects: (1) 32-bit address space (maximum malloc=2 GB); (2)
maximum file size 2 GB (although see below); (3) a variety of performance-related effects;
(4) floating-point computation done in an unsual way.

Mode OS
Application

Re-
compile?

Address
Size (bits)

Register
Extend?

GPR
Width
(bits)

Page 34

64-bit Mode Yes 64 Yes 64

Long
Mode

Compat. Mode

New
64-bit

OS

No 32 No 32

Legacy Mode Legacy 32-bit No 32 No 32

Some development work is now proceeding in 64-bit mode and we plan to phase in 64-bit
computing on some newer Lightning and Flash segments. You'll need to note the following:

 1. Applications compiled in 32-bit mode can run without recompilation on 64-bit segments,
as long as all the libraries used in the 32-bit compilation are available and loaded into
your environment (with modulefiles). Apps run this way *should* produce the same
numerical results, too. This is called "Long Mode Compatibility Mode" in the table.

 2. The real power of the Opteron is fully exposed in "Long Mode 64-Bit Mode." This
requires complete recompilation, potentially using certain compiler switches, and using
64-bit libraries loaded from certain modulefiles. An example compiler switch is -tp
k8-64 for PG. LAMPI will have separate modulefiles for 32-bit and 64-bit mode.

 3. When used in Long Mode 64-bit Mode the Opteron allows a flat address space of up to
2^48. That's 282 TB and it ought ot hold most ASC users for a while.

 4. The Opteron microprocessor does floating-point computation in a very different way in
32-bit mode than in 64-bit mode. Hence, numerical results may be different between
Legacy mode and 64-bit mode.

 5. On 64-bit systems there is a new compiler, PathScale, that can only be used on 64-bit
systems.

 6. You can determine if a given relocatable binary or an executable is 32-bit or 64-bit
using the Unix "file" command.

 7. Note that none of this has anything to do with the precision required by your
application. If the numerics of your application require 64-bit floating-point precision
you can generally achieve this on virtually any processor through proper data
declarations - ensuring that all data objects are represented by programming language
data types that contain sufficient storage, i.e., "double precision" in Fortran77 parlance.
However, you should get slightly better 64-bit floating-point performance in Opteron's
Long Mode 64-bit Mode.

Big File Fix

A fix allowing files larger than 2 GB in 32-bit Linux systems has been available for some
time. You need to apply all three of the following when you compile:

-D_FILE_OFFSET_BITS=64

-D_LARGEFILE64_SOURCE=1

-D_LARGEFILE_SOURCE=1

on the gcc compile line. These preprocessor flags work with gcc and intel C. For the PGI
compilers use these and add -Mlfs. There is no such combination that works for the NAG
compiler. You can check by 'nm -B a.out' and checking that things like 'open64' are
defined, not plain 'open'.

Then, if you want to randomly "seek" within a file, after using the above compiler options, it
is recommended that you use lseek in conjunction with open instead of other combinations,

Page 35

such as fopen, fseek, etc.. If this isn't possible, contact the ICN Consultants, who can
provide further advice.

Available Compilers

The following compilers are available, although not on all systems. Each compiler must be
accessed by loading its corresponding modulefile. Be aware that the same name may be
used by several compilers (i.e., f95 from both NAG and Absoft). There is a proposal to go
forward with only two compilers, PGI and PathScale.

GNU

Fortran (g77), C (gcc), and C++ (g++) are available. (No f90.)

One version available without loading a modulefile. Generally, one or two other versions
available via modulefiles.
Debugging: -g

Absoft

The compilers are f77, f90, f95 (and cc).
Fortran optimization options: -O0, -O1, -O2, -O3
Other options of interest include:

-YEXT_SFX="_": append an underscore suffix to subprogram names.
-YEXT_NAMES=LCS: subprogram names will have lower case letters.
-i8 promote integers to i*8
-N113 promote REALs and COMPLEX variables to DOUBLE (or DOUBLE COMPLEX).

Intel

This is the Intel x86 compiler producing code for IA32.
There are two significantly different versions available.
With version 7.1 you load a single modulefile and get both the Intel Fortran compiler ifc and
the Intel C compiler icc .
With version 8 you need to load a separate modulefile for Fortran (intel-fortran-8.1) and C
(intel-c-8.1).
With version 8 Fortran is invoked with ifort. C is still icc.
Another difference: with Fortran version 8 you need to have the compiler's modulefile loaded in
order to run you code; with version 7, you don't.
Another difference: with Fortran version 7 there is a "default" version but with version 8 there is
not. Be careful with "module load intel"
Optimization with -O1 (default), -O0 (none), or -O3
Debugging with -g
-r8 -i8
-auto (default for scalar vars) or -save
-Vaxlib: links in some important "portability" routines (ETIME, GETARG, GETENV,
IARGC, SHIFTL, , etc.). Only needed for version 7.
-fpp2: Fortran preprocessor
-pc<32|53|80>: internal FP precision <32-|53-|64-bit> significand; pc80 is default

Lahey

The compilers are lf95 and cc or gcc
Fortran optimization options: --o2 --sse2
Fortran 64-bit real variables: --dbl
Debugging: -g (and -O0)
Note: The Lahey compilers will NOT be available when the BProc clusters change to 64-bit
mode, so you might want to migrate away from them right now.

NAG

Two compiler versions available: native AMD64 and x86
The compilers are f95 (that's it - no f77 or f90)
ABI Choice: -abi=32 or -abi=64; the latter will only run on systems with 64-bit OS (currently
none).
Fortran optimization options: -O4, -O3, -O2 (default, equiv. to -O), -O1, -O0
Other options of interest include:

-float-store don't store FP vars in registers. (For machines with registers wider than
64 bits.)
-ieee=stop: traps FP overflow, Db0, invalid operand; causes
execution termination
-C=array: bounds checking
-info: output compiler info messages (default is not to)

Page 36

Portland Group

The compilers are pgf77, pgf90, pgCC, pgcc and pghpf.
Fortran optimization options: -fastsse -tp k8-64
Caution: this option will only work on systems with 64-bit OS (currently none).
Fortran 64-bit real variables: -r8
Note: a current "issue" relating to the PG compiler modulefiles requires that you load its
modulefile last if also using a TotalView modulefile.
Debugging: -g (compiler sets to -O0)
Other options of interest include:

-Kieee=strict: strict conformance with IEEE 754 fp standard.
-i8 -r8:
-Mlfs: link in Linux routines for large files (> 2 GB)
-Minform=inform: display all compiler err messages
-fast: -O -Munroll -Mnoframe
--c: array bounds checking
-byteswapio: Swap bytes from big-endian to little-endian or vice-versa on I/O of
unformatted data.

NEW: The AMD Core Math Library (ACML), a set of numerical routines tuned specically for
Opteron processors, is available. The routines, which are available in both FORTRAN and C
interfaces, include BLAS, LAPACK, FFT, and fast random number generators.

To use it with PG compilers two steps are required: compile with -Mcache_align and
link with -lacml
Documentation is available here.

PathScale

Compilers are pathf90, pathcc, and pathCC. There is no pathf77.
Ofast Equivalent to -O3 -ipa -fno-math-errno
-OPT:roundoff=2:Olimit=0:div_split=ON:alias=typed.

ipa is interprocedural analysis. Optimizes across functional boundaries. Must be specified both at
compile and link time.

Aggressive unsafe optimizations: Changes order of evaluation. Deviates from IEEE 754 standard
to obtain better performance.

-byteswapio writes all data in format opposite to that of native processor.
-conversion [native, little_endian, big_endian]
There is temporarily an ACML library available. You can link against it with

-L/net/scratch1/dog/flash64/AMD/acml_3.1.0/pathscale64/lib -lacml

Compiling MPI Codes

There are two MPI packages available on Lightning and Pink now: LAMPI, the Los Alamos
Message Passing Interface and a version of MPICH, a version from Argonne Nat'l Lab.
However, we expect that MPICH will go away soon. MPICH is not available on Flash.

Neither of these packages is supplied/supported by a vendor.

The Los Alamos Message Passing Interface (LA-MPI) project provides an end-to-end network
fault-tolerant message passing system for tera-scale clusters. You can read about the project
on http://public.lanl.gov/lampi.

Of course, you need to load a modulefile in order to use either MPI package.

On all BProc systems LAMPI is fully compatible with all compilers, implicitly. That means
there are not separate modulefiles for LAMPI compiled with one compiler or another.

The LAMPI modulefiles are of the form lampi/version.
The MPICH modulefiles are of the form mpich/version.

As is the case with other LANL systems (such as QSC) your compile lines need to include the
path to the MPI include files and load libraries. Example:

Page 37

 Compiling MPI Codes on Lightning

lc-1% module load lampi/1.5.12 lahey/6.2

lc-1% env|grep MPI

MPI_ROOT=/opt/lampi/lampi-1.5.12/gm
MPIHOME=/opt/lampi/lampi-1.5.12/gm
MPI_LD_FLAGS=-L/opt/lampi/lampi-1.5.12/gm/lib
MPI_COMPILE_FLAGS=-I/opt/lampi/lampi-1.5.12/gm/include

lc-1% lf95 program.f -I$MPI_ROOT/include -L$MPI_ROOT/lib -lmpi

lc-1% lf95 program.f $MPI_COMPILE_FLAGS $MPI_LD_FLAGS -lmpi

Note that the environment variables set by loading the MPI modulefile on the BProc clusters
are different from the ones set by loading the MPI modulefile on the Q clusters. You may
have to change your makefile.

LAMPI Tips

 1. Diagnostic options:

 mpirun -t Tags output from parallel processes with a prefix indicating
its origin, e.g. a prefix of 9[4.1.n16] means process rank
9, host 4, on-host process rank 1, host name n16

 mpirun -w Enables library warnings (about requesting 0 bytes of
memory, temporary resource exhaustion etc.)

 mpirun -v Verbose library diagnostics, primarily related to
initialization and termination.

 2. Performance Options

 mpirun -f Disables argument checking,
slightly lowering latency.

 mpirun -mf noack, nochecksum This disables LA-MPI guarantee
of the integrity of transmitted
data using a
checksum/retransmission
protocol, which would incur a
small but non-negligible
overhead on communication.
This is a reasonable default
mode of operation if the network
is regarded as stable.

 3. Other options

 mpirun -q Disables the LA-MPI startup banner.

 mpirun -crc Enables 32-bit CRC checking instead of 32-bit additive
checksums (the LA-MPI default) for application to
application data integrity.

 4. Configuration File

Default options can be set in a configuration file ~/.lampi.conf. Each command line
option has an associated configuration file variable that can be set in this file. The
complete set of options and corresponding configuration variables can be listed using
"mpirun -list-options".

For example, to enable diagnostic tagging of output, turn off argument checking, the

Page 38

start-up banner and Myrinet checksum/retransmission, put the following lines in
~/.lampi.conf

Tag output, don't check args, no banner and assume Myrinet is reliable
OutputPrefix 1
NoArgCheck 1
Quiet 1
MyrinetFlags noack,nochecksum

 5. Log File

Error and warning messages from LA-MPI are recorded in a log file called lampi.log in
the current directory.

The name of this file can be changed by setting the environment variable LAMPI_LOG.

To disable the log file

setenv LAMPI_LOG /dev/null

 6. Processes

As mentioned above, LA-MPI creates an administrative daemon process on each slave
node that creates and manages the application processes. There is also a master-node
process "mpirun ..." created. A useful way of filtering out the admin MPI processes is
to use the bpps -s, which will ignore processes in the "S" state.

Exercise #6: Compiling

 1. Compile testsize.c or testsize.f and run it on a slave node. Note the results. Here is what you
should see.

 2. Compile the sweep-single file into a sequential binary executable. You don't have to run it,
just compile it. Use your favorite compiler. You need two source files: sweep-single.f and
timers.c . Compile it using the debugging flag (-g).

 3. Compile the sweep-mpi.f file into an MPI binary executable. You don't have to run it, just
compile it. Use your favorite compiler. Or your least favorite. You need two source files:
sweep-mpi.f and timers.c . Compile it using the debugging flag (-g).

This ends the sixth exercise.

Debugging

There is a Portland Group debugging tool, pgdbg, if you used the PG compilers.

Thanks to the gallant efforts of Laurie McGavran, Totalview runs on Lightning, Flash, Pink,
TLC, and Grendels. There are different procedures for debugging serial and parallel jobs.

At the time of this writing there are several versions of Totalview available on the BProc
systems. The examples below do not mean to imply that any one version is necessary or
preferred.

You will always be running TotalView on the master nodes of the BProc clusters.

Note: see the compiler section above for a special note on using Totalview with PG
compilers.

Additional Note: If you're using Pink see the Xauth section above for a special note on setting
up X windows, which is needed for TotalView.

Debugging a Serial Job With TotalView

Page 39

In this case, you run a TotalView server remotely on a slave node that talks to a GUI running
on the front end. Here's how to use TotalView (on the master node) to debug a serial job
running on a remote slave node.

 llogin
 module load totalview/version
 totalview -remote $NODES ./a.out

When you do this it will bring up the TotalView "root window" (shown below for an executable
called "sweep3d.single."):

To start debugging, double click on the line containing the executable name. This will bring
up the TotalView "process window" and you can then debug as usual. When you start the
executable it will be running on the slave node.

Debugging a LAMPI MPI Job With TotalView

The general procedure is as follows:

 llogin -n #
 module load totalview/version lampi
 totalview mpirun -a -np # ./a.out

The behavior should be the same as on other LANL systems: First, type "Shift-G" in the
Process Window; a "Question" Window will appear asking if you want to stop the job" and you
should answer "Yes" if you want to set breakpoints.

NEW!Debugging an MPICH Job With TotalView NEW!

A special procedure is needed for this because mpirun for MPICH isn't an executable, it's a
script. The following procedure works as of May, 2006. Remember that there are several
builds of MPICH on Pink, one for each compiler. The example below assumes that the
application code was built with the Intel version of MPICH. You can see that not all of these
steps are required - some extra ones are included to explain what's going on.

Page 40

 Using TotalView With MPICH

pfe1% llogin -n 4
Job <317795> is submitted to default queue .
<<Waiting for dispatch ...>>
<<Starting on pink>>
NODES: 805, 806

pink% module load totalview
pink% module load mpich/1.2.5-intel
pink% which mpirun
/usr/mpich-intel-1.2.5..10/gm/bin/mpirun
pink% cat /usr/mpich-intel-1.2.5..10/gm/bin/mpirun
#!/bin/sh
exec /usr/bin/mpirun --gm $*
pink% totalview /usr/bin/mpirun -a -np 4 --nper 2 -gm a.out.mpich

Exercise #7 (Optional): Debugging Running Codes On Slave Nodes

 1. This exercise is optional and considers an advanced feature of TotalView not covered in the
tutorial. Do this only if you already know how to use TotalView well.

 2. Attach to a running (slave-node) sequential binary.

 1. Start sweep-single running on a slave node.

 2. In another window get on the master node and cd to where you compiled sweep in
the previous exercise. Then start TotalView with no arguments.

 3. In TotalVIew's Root Window click on the "Unattached" button to bring up a pane
showing all processes owned by you but not attached to TotalView.

 4. In TotalVIew's Root Window select File -> New Program from the menu bar. Enter the
name of the executable with its full path, its PID, and the number of the slave node on
which it is running. (If you get an error message about a missing shared library, quit
TotalView, load the modulefile for the compiler that was used to build sweep-single,
and restart.)

 5. (Note that you cannot attach to a remote process by diving on it in the Unattached
Pane, because you can only do this with local processes, but here, you're running
TotalView on the master node and the process on a slave node.)

 6. After you've attached, "Halt" the process to see the source code in TotalView's Process
Window. You can "Go" the process and/or then quit TotalView.

 3. Attach to a running (slave-node) MPI-parallel binary.

 1. Start sweep-mpi running on a slave node with 2 processes.

 2. In another window start TotalView with no arguments.

 3. In TotalVIew's Root Window click on the "Unattached" button to bring up a pane
showing all processes owned by you but not attached to TotalView.

 4. Dive on the "mpirun" process. This should give you control of your MPI processes.

 5. To see the source code, go to the "Attached" pane in the Root Window. You may have
to "expand" the mpirun processes (but not the first one). After you expand, dive on
one.

This ends the optional debugging exercise.

Page 41

Panasas File System

The global storage and parallel filesystem for all BProc clusters is provided by Panasas, a
company founded and currently led by Garth Gibson, who did the research that led to the
development of RAID technology.

The Panasas product is an example of an important new storage technology called Object
Based Storage, in which the storage devices have some "understanding" of how different
blocks of a file are related. Block-to-file mapping and inode processing is offloaded to the
storage devices.

Another key aspect is separation of data and metadata amongst different storage devices and
datapaths. In Panasas metadata is stored on "Director Blades" and user data objects are
stored on "Storage Blades."

Files larger than 64 KB are striped across the Panasas storage devices. This is done to
improve performance; i.e., the user application can potentially realize the aggregate
throughput of multiple storage devices. Rebalancing of the system is done automatically and
is object based.

Other OBD activities include lustre.org and IBM's StorageTank initiative. Lustre has been
deployed successfully at LLNL.

To the user, the Panasas system should appear as a highly-available, global shared file
system with relatively high performance, even for small, sequential file I/O but especially for
large-scale parallel I/O.

Initial performance: expect 40 MB/sec/Storage Blade, thus, 400 MB/sec maximum for a file
striped across one shelf, 10 storage blades. 300 MB/sec is routine. From an individual
machine (node) expect 70-90 MB/sec. Metadata rates (inserts/deletes/lookups/stats per
second) run at roughly NFS rates. Parallel operations scale to multi-GB/s levels.

If you use MPI-IO or are interested in maximizing performance of your application's I/O
performance on Panasas you should view the presentation given by James Nunez recently.
It's a PowerPoint file available on http://computing.lanl.gov/article/439.html.

On all LANL BProc systems Panasas is connected to the cluster via a set of GigE switches. All
I/O requests go over the Myrinet interconnect. Several nodes serve as I/O nodes - essentially
Myrinet-to-GigE routers.

In a Panasas system 10 Storage Blades and 1 Director Blade are combined into a single shelf
containing 5 TB of storage and a 16-port Gigabit Ethernet switch (which uses 4 ports to the
network and 11 to the blades). The blades use Intel Pentium processors and 250-GB ATA disk

Page 42

drives.

The Panasas system on Lightning, Flash, Pink, and TLC will be mounted on the front ends,
master nodes, and slave nodes as /net/scratch1 and /net/scratch2.

As mentioned above, on Pink, the PanFS filesystem is the only filesystem that the slave
nodes have access to.

Page 43

Where to Go For Help

LANL's ICN Consulting Office will handle questions on Lightning. You can reach them at
5-4444, option "3", or send email to consult@lanl.gov

Please note the recent declaration of support levels for LANL systems, available on
http://computing.lanl.gov/article/454.html.

There is Lightning, Flash, and Pink information on the HPC Documentation page,
http://computing.lanl.gov in both the open and the secure.

Future Improvements

64-bit Linux 2.6, Bproc V4 (Milestone O), Posix threads, OpenMPI, PaScalBB (Scalable and
available I/O network design), HPSS FTAs

More nodes/segments (bolt, flashd).

Increase Panasas on Lightning to 200TB.

Reference Info

Flash Quick Reference Guide

Lightning Quick Reference Guide

Pink-TLC Quick Reference Guide

Saguaro Quick Reference Guide (coming soon).

Page 44

Coyote Quick Reference Guide (coming soon).

The BProc Project Software Repository http://sourceforge.net/projects/bproc

BProc Project Description http://bproc.sourceforge.net

LANL's Cluster Research Team http://public.lanl.gov/cluster

Clustermatic Home Page http://www.clustermatic.org

Original page on LANL's Pink System http://www.lanl.gov/projects/pink

Excellent description of Intel x86 architecture by Patterson & Hennessy.

Linux Bios Home Page http://www.linuxbios.org

"BProc: The Beowulf Distributed Process Space", Erik A. Hendriks, 16th Annual ACM
International Conference on Supercomputing , June 22-26 2002. Available as PS or PDF on
http://public.lanl.gov/cluster/papers/index.html

A news article about lightning from fcw.com

Linux Networx's Home Page http://www.linuxnetworx.com

Linux Networx's take on LinuxBios linuxnetworx.com/products/linuxbios.php

Scyld Computing Corp., http://www.scyld.com/platform_overview.html

Linux Labs

The Advanced Computing Laboratory's Ed cluster (postscript file), an early BProc prototype.

Course Evaluation

Please complete the online evaluation form at
http://trouble.lanl.gov/~hjw/eval.php in the yellow network. Click the box above to go there.

Public Web Site | Web Contact | Privacy Policy | Copyright Â© 1993-2004 UC
Operated by the University of California for the U.S. Department of Energy |
LA-UR-05-2741.

